炼数成金 门户 科学探索 数学 查看内容

困扰数学家25年的“切苹果”难题,被一位华人统计学博士解决了

2021-3-10 09:35| 发布者: 炼数成金_小数| 查看: 26435| 评论: 0|原作者: 边策 杨净|来自: 量子位

摘要: 请听题:如何将苹果平均一分为二,还能保证它长时间的新鲜?这是一个严肃的科学问题,已经困扰了人类数学家 25 年之久。根据常识,就是要保证果肉暴露在外面的面积最小,也就是切片的面积最小。如果跨越到更高的维度 ...
请听题:如何将苹果平均一分为二,还能保证它长时间的新鲜?

这是一个严肃的科学问题,已经困扰了人类数学家 25 年之久。根据常识,就是要保证果肉暴露在外面的面积最小,也就是切片的面积最小。如果跨越到更高的维度,是否依然成立?这就是 1995 年,由三位数学家提出的一个几何学猜想。

现在,这个难题被一位华人统计学博士解决了。成果一经发布,就迅速引起了数学、理论计算机科学、统计学等多个领域的科学家的关注。他们一致认为,数学大师、菲尔兹奖得主,原本猜想的提出者让·布尔甘(Jean Bourgain)一定会对这一进展感到兴奋。毕竟,在他去世前(2018 年)的几个月里还在关心这一问题进展,但终其一生都未能解决。

困扰数学家 25 年的几何问题
1984 年,著名数学家让·布尔甘提出了一个猜想。

一个任意维度的凸体,用低一维的平面去平分,那么存在一个常数 c,让凸体至少存在一个切面的面积大于 c。

换句话说,如果你一刀平分“任意维度空间的西瓜”,随便你怎么劈,总有一个切面总大于 c。(Ps:以往的科学家用的是苹果的例子。但准确来说不能选苹果,因为苹果上下是凹的。)

在 3 维空间中,这个结论似乎很好理解,因为无论西瓜长成什么奇形怪状,总不可能在每个角度都细长。像长形的西瓜,竖直切下去,切面很小,可以你也可以水平切开平分它,这样切面就会很大。

但在 3 维世界中正确的事情,到了高维空间却不一定成立。这个问题后来被布尔甘自己证明,但数学家们并不满足于用平面切西瓜,而是希望能找到一个更小的切面,它可以是曲面。而这恰好是 1995 年 Kannan、Lovász 和 Simonovits 三人提出的 KLS 猜想关心的问题:用来平分的最小曲面面积是多少?

以二维空间里的一个三角形为例。这个最小的“曲面”是一段圆弧。用圆弧来平分一个三角形,中间的线长度最短,而较佳“平面”——直线——的效果略差。

如何用最小“切面”平分三角形。图片来源:Quanta Magazine

到了更高维度的空间中,二等分的较佳平面和较佳曲面差距会变大吗?切面的面积是否和维度 d 有关?

这个问题已经不再是纯粹的数学问题。普林斯顿大学数学系教授 Assaf Naor 表示,KLS 猜想在纯粹的数学和理论计算机科学中都很重要。KLS 猜想的结果,直接关系到随机行走算法的运行时间,如机器学习模型中采样问题。·所以最后解决这个几何问题的学者,都并非几何学的专家,而是来自计算机界。

用统计方法解决问题
经过数学家的抽象,KLS 猜想就像一个封装着气体的容器,找到较佳切面就是寻找容器的“瓶颈”。

想象一个哑铃形状的容器,里面有一个气体分子在随机运动,哑铃中间连接部分越细,分子就越难跑到另一侧。

哑铃形的平分切面很小。图片来源:Yin Tat Lee 论文

现在人们想知道,在高维空间,这个凸的容器最细的地方有多细。(当然,哑铃并非是凸的。)

2012 年,Eldan 通过引入一种称为随机定位的技术,来降低这个问题与维度上界。(到底是维度 d 的几次幂。)

2015 年末,华盛顿大学的 Vempala 和 Yin Tat Lee改进了 Eldan 的随机定位,以进一步将 KLS 因子(用于描述瓶颈是否存在)降低到维度的四次根 d1/4。

KLS 猜想的上界不断降低。图片来源:同上

甚至,他们还将幂指数降低到几乎为 0,由于 d 的 0 次幂总是等于 1,Lee 和 Vempala 似乎证明了 KLS 因子是一个与维度无关的常数。

他们在 arXiv 上发布了他们的论文。但是几天后,这篇文章就被人发现了一个缺陷,他们关于 d0 的证明是错的。之后,二人修改了文章,把界限重新调整到 d1/4。几年来,研究人员认为 KLS 猜想的探索已经到此终结了。


不过他们还在论文中,保留了 d0 证明的一些想法。这也为后来的突破埋下伏笔。

他们的论文引起了另一位统计学者 Yuansi Chen 的注意。Chen 当时是加州大学伯克利分校的统计学研究生,他正在研究随机采样方法的混合率。而随机采样是许多类型统计推断中的关键,例如贝叶斯统计。

Chen 深入研究文献,花了数周时间试图填补 Lee 和 Vempala 的证明中的空白,但依然没有解决。于是他转变了思路,在 Lee 和 Vempala 的思想指导下,他找到了一种方法,采用递归来降低 KLS 因子上界。

经过反复迭代,这种方法将 KLS 猜想问题再次拉回到 d0 的上界。这一结果意味着,高维凸形物体不会有哑铃那样的结构。在 n 维凸体中随机行走,遍历整个图形的速度比我们之前预想得要快得多。这将有助于计算机科学家对不同的随机采样算法进行优先级排序。

三个计算机相关的科学家
虽然表面看上去,这三位学者似乎跟数学没什么关系。但仔细翻看他们的履历,他们都曾跟数学结下了不小的缘分。

首先,直接与研究相关的这位统计学博士后——Yuansi Chen(陈远思,音译)。今年年初,他开始在杜克大学统计科学系担任助理教授的职位。主要研究方向是统计机器学习、优化以及在神经科学中的应用,尤其对其中域适应性、稳定性、MCMC 采样算法、卷积神经网络和计算神经科学中出现的统计问题感兴趣。

Yuansi Chen 于 2019 年在加州大学伯克利分校统计系获得博士学位。其博士生导师是著名华裔统计学家、UC 伯克利统计系和电子工程与计算机科学系终身教授郁彬。在攻读博士之前,他还在法国 Ecole Polytechnique 获得了应用数学专业的工程师文凭。随后,前往在苏黎世联邦理工学院 ETH Foundations of Data Science(ETH-FDS)做博士后研究。

而启发 Yuansi Chen 数学灵感的,是两位计算机科学家,Yin Tat Lee 和 Santosh S. Vempala。

Yin Tat Lee,目前是华盛顿大学助理教授,本科毕业于香港中文大学。2012 年从港中文大学毕业后,前往麻省理工学院攻读博士学位,随后前往微软研究院做博士后研究。他的研究方向主要在算法方面,包括凸优化、凸几何、谱图理论和在线算法等广泛的课题。

以往的研究里,他曾结合连续数学和离散数学的思想,大幅提升了在计算机科学和优化中许多基本问题的算法,比如线性编程和较大流量问题。他曾获得 SODA 较佳论文奖、NeurIPS 2018 较佳论文奖、NSF 职业奖。去年他还获得了有“诺奖风向标”之称的斯隆奖,以及美国较大的非政府奖学金之一——帕卡德奖学金。

再来看 Santosh S. Vempala,佐治亚理工学院计算机科学教授。主要研究领域是理论计算机科学,包括抽样、学习、优化和数据分析的算法工具;随机线性代数,高维几何。他曾在卡内基梅隆大学攻读博士学位,本科毕业于印度理工学院的计算机专业,曾获 NSF 职业奖、斯隆奖等奖项。在来到佐治亚理工学院之前,他曾担任 MIT 应用数学系担任教授、UC 伯克利米勒研究员。

数学家:不可思议
Yuansi Chen 的论文一发布,迅速就引起了数学界的学者关注。不光是因为此前的错误证明,还由于陈远思这个名字在数学界十分陌生,研究人员对待这一成果十分谨慎。

但他的方法很容易被验证。早期研究过 KLS 猜想的以色列数学家 Boáz Klartag,就在第一时间看了论文。他表示:“我基本上立即停止了我正在做的一切事情,并检查了这篇论文。这篇论文是 100% 正确的,这一点毫无疑问。”

除了一众数学家关注之外,这篇论文还引起了理论数学家、统计学等领域的注意。哈佛大学计算机科学教授、微软研究院前新英格兰首席研究员 Boaz Barak 则发推祝贺,并表示这是一个非常重要的突破,加速了对近似凸体体积的研究。


但点赞祝贺之余,也有不少学者表示十分遗憾。因为提出这一猜想的人菲尔兹奖得主布尔甘已于 2018 年去世,如果他还在的话,一定会为这一进展感到兴奋。

据 Quanta Magazine 报道,布尔甘曾在去世前几个月,联系了他的朋友、特拉维夫大学教授 Vitali Milman,询问这一猜想是否有任何进展,想在离开之前知道答案。

但 Vitali Milman 说,布尔甘在这一问题上,花费的时间和投入的精力比任何其他问题多得多。没想到,最后这个问题却被统计学解决了。

参考链接:
[1] https://www.quantamagazine.org/statistics-postdoc-tames-decades-old-geometry-problem-20210301/ 
[2] https://www.cc.gatech.edu/~vempala/papers/kls_survey.pdf 
[3] https://arxiv.org/abs/2011.13661 
[4] http://yintat.com/ 
[5] https://people.math.ethz.ch/~chenyua/ 
[6] https://www.cc.gatech.edu/news/604802/computer-scientists-make-kls-conjecture-breakthrough 

声明:文章收集于网络,版权归原作者所有,为传播信息而发,如有侵权,请联系小编删除,谢谢!

欢迎加入本站公开兴趣群
高性能计算群
兴趣范围包括:并行计算,GPU计算,CUDA,MPI,OpenMP等各种流行计算框架,超级计算机,超级计算在气象,军事,航空,汽车设计,科学探索,生物,医药等各个领域里的应用
QQ群:326600878

鲜花

握手

雷人

路过

鸡蛋

相关阅读

最新评论

热门频道

  • 大数据
  • 商业智能
  • 量化投资
  • 科学探索
  • 创业

即将开课

 

GMT+8, 2021-4-22 00:15 , Processed in 0.170963 second(s), 25 queries .